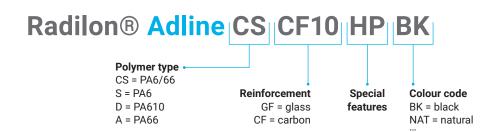


Radilon® Adline 3D printing filaments

RadiciGroup is one of the world's leading producers of a wide range of chemical intermediates, polyamide polymers, high performance polymers and advanced textile solutions.


RadiciGroup High Performance Polymers business area offers a complete range of engineering polymers to meet the needs of many industries including automotive, electrical and electronics, and consumer and industrial goods.

Taking advantage of the Group's upstream integration and extensive knowledge of polymer formulation and compounding, RadiciGroup High Performance Polymers is ready to meet the needs of additive manufacturing technology with its new product range Radilon® Adline 3D Printing Filaments for fused filament fabrication.

Radilon® Adline Filaments are based on **Radilon® polyamide grades**, a well-known brand portfolio in the injection moulding and extrusion markets.

Specially developed low-warpage and high-dimensional-stability formulations guarantee the ease of printing with every Radilon® Adline grade, together with the semicrystalline nature of polyamide polymers. The products feature advanced properties such as mechanical, chemical and thermal resistance, thanks to our 40 years' expertise in compounding.

Radilon® Adline grade nomenclature

Grade	Key properties	Applications	
Radilon® Adline CS NAT Polyamide 6/66, natural colour	Low melting point of 195°C makes it suitable for most printers; low warpage; chemical resistance; ductility; high interlayer adhesion	Parts requiring good mechanical and chemical properties, together with semi-transparent and smooth surface appearance	
Radilon® Adline CS CF10 HP BK Polyamide 6/66 - 10% carbon-fibre filled, black colour	Low melting point of 195°C makes it suitable for most printers; high dimensional stability; chemical resistance; strength and stiffness; high interlayer adhesion	Parts requiring high stiffness and good chemical properties, as well as excellent surface appearance	

Other Radilon® Adline grades based on polyamide 6 and bio-based polyamides are currently under development at RadiciGroup High Performance Polymers.

Application examples

Courtesy of Ciano Shapes

Car prototype made of Radilon® Adline CS CF10

hiips://cianoshapes.com/blog/2021/10/20/teslacybertruck-stampato-in-3d/

Pressure vessel component made of Radilon® Adline CS

Clamp made of Radilon® Adline CS CF10

hiips://www.thingiverse.com/thing:2702273

Chemical Resistance

of Radilon® Adline cs grades in comparison to other typical materials used in additive manufacturing

Chemicals	PLA	ABS	PET	Adline CS
Oils	-	-	+	++
Gasoline and diesel fuel	-	-	0	+
Detergents	0	0	+	++
Brake fluids	-	-	++	++
Cooling liquids	-	0	+	++
Halogenated compounds	-	-	0	+
Hydrocarbons and aromatics	-	-	0	+
Ethers	0	0	0	+
Esters	0	0	0	+

++ Very good 0 Fair + Good - Poor

Printing parameters

Radilon® Adline 3D Printing Filaments have been tested with several open 3D printing systems to guarantee the ease of processing of the materials.

Radilon® Adline CS NAT and Radilon® Adline CS CF10 HP BK

can be printed with similar process parameters.

It is suggested to use a hardened nozzle.

Nozzle temperature: 250-280°C Bed temperature: 70-100°C

Print speed: 30-40 mm/s

Adhesion promoter: Magigoo glue

Drying: 8-12 h at 70-80°C

Please note: parameters are dependent on the printer used.

The information provided in this document corresponds to our knowledge on the subject as of the date of publication. The information may be subject to revision as new knowledge and experience become available. Data provided fall within the normal range of product properties and relate only to the specific designated material. The data may not be valid for such material if used in combination with any other material or additive, or in any process, unless otherwise expressly indicated. The data provided should not be used to establish specification limits. Such data are not intended to substitute for any testing you may need to conduct to determine the suitability of a specific material for particular purposes. Since the above mentioned companies cannot anticipate all the variations occurring in end-use conditions, the above mentioned companies makes no warranties and assumes no ilability in connection with any use of the above information. Nothing in this publication is to be considered as a licence to operate under, or a recommendation to infringe,

RADICI NOVACIPS SPA (Headquarters) - Via Bedeschi, 20 - Chignolo d'Isola 24040 (BG) - IT

